翻訳と辞書
Words near each other
・ Strong noun
・ Strong NP-completeness
・ Strong objectivity
・ Strong on Oaks, Strong on the Causes of Oaks
・ Strong operator topology
・ Strong orientation
・ Strong partition cardinal
・ Strong pass
・ Strong Peak
・ Strong perfect graph theorem
・ Strong Persuader
・ Strong Place
・ Strong Poison
・ Strong prime
・ Strong prior
Strong product of graphs
・ Strong programme
・ Strong pseudoprime
・ Strong Reaction
・ Strong reciprocity
・ Strong reference
・ Strong Republic Transit System
・ Strong River
・ Strong Rock Christian School
・ Strong RSA assumption
・ Strong salt
・ Strong School
・ Strong secrecy
・ Strong set
・ Strong Stuff


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Strong product of graphs : ウィキペディア英語版
Strong product of graphs
In graph theory, the strong product ''G'' ⊠ ''H'' of graphs ''G'' and ''H'' is a graph such that
* the vertex set of ''G'' ⊠ ''H'' is the Cartesian product ''V(G)'' × ''V(H)''; and
* any two distinct vertices ''(u,u')'' and ''(v,v')'' are adjacent in ''G'' × ''H'' if and only if:
*
* is adjacent to and =, or
*
* = and is adjacent to , or
*
* is adjacent to and is adjacent to
The strong product is also called the normal product and AND product. It was first introduced by Sabidussi in 1960.
==Shannon capacity and Lovász number==
The Shannon capacity of a graph is defined from the independence number of its strong products with itself, by the formula
:
\Theta(G)
= \sup_k \sqrt()
= \lim_ \sqrt(),

László Lovász showed that Lovász theta function is multiplicative:〔See Lemma 2 and Theorem 7 in .〕
: \vartheta(G \boxtimes H) = \vartheta(G) \vartheta(H).
He used this fact to upper bound the Shannon capacity by the Lovász number.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Strong product of graphs」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.